multispatialCCM - Multispatial Convergent Cross Mapping
The multispatial convergent cross mapping algorithm can be used as a test for causal associations between pairs of processes represented by time series. This is a combination of convergent cross mapping (CCM), described in Sugihara et al., 2012, Science, 338, 496-500, and dew-drop regression, described in Hsieh et al., 2008, American Naturalist, 171, 71–80. The algorithm allows CCM to be implemented on data that are not from a single long time series. Instead, data can come from many short time series, which are stitched together using bootstrapping.
Last updated 1 years ago
3.32 score 5 stars 21 scripts 322 downloadspartitionBEFsp - Methods for Calculating the Loreau & Hector 2001 BEF Partition
A collection of functions that can be used to estimate selection and complementarity effects, sensu Loreau & Hector (2001) <doi:10.1038/35083573>, even in cases where data are only available for a random subset of species (i.e. incomplete sample-level data). A full derivation and explanation of the statistical corrections used here is available in Clark et al. (2019) <doi:10.1111/2041-210X.13285>.
Last updated 5 years ago
1.00 score 2 scripts 95 downloads